

Uzam-zamansal modelleme için yapay öğrenme modelleri

Mehmet Gönen mehmetgonen@ku.edu.tr

Endüstri Mühendisliği Bölümü, Mühendislik Fakültesi Hesaplamalı Biyoloji Bölümü, Tıp Fakültesi

27 Şubat 2021

 Guatemala yerlileri tarafından çizilen 1527 ve 1530 yılları arasındaki İspanyol işgalinin haritası

 "After choosing the area we usually have no guidance beyond the verifiable fact that patches in close proximity are commonly more alike, as judged by the yield of the crops, than those which are far apart." (R. A. Fisher, 1935)

Tobler's First Law of Geography: "Everything is related to everything else, but near things are more

related than distant things."

Tobler, W. (1970) "A computer movie simulating urban growth in the Detroit region" Economic Geography, 46(2): 234-240.

Crimean-Congo Hemorrhagic Fever (CCHF) Virus Ecology

													Season
0	0	2	9	24	62	101	44	6	1	0	0	249	2004
0	0	0	8	27	77	95	51	3	4	0	0	265	2005
0	0	1	19	65	160	114	72	8	0	0	0	439	2006
0	0	2	25	119	216	224	90	40	1	0	0	717	2007
0	0	1	37	241	432	411	151	40	2	0	0	1315	2008
0	0	0	37	205	496	366	177	33	3	1	0	1318	2009
0	0	0	61	240	272	222	59	11	2	0	0	867	2010
0	0	1	29	149	341	349	180	19	5	2	0	1075	2011
0	0	1	31	223	233	201	90	13	3	1	0	796	2012
0	0	1	74	225	260	254	81	11	2	2	0	910	2013
0	4	6	95	218	238	280	108	13	5	0	0	967	2014
0	0	2	16	97	231	218	119	20	12	2	1	718	2015
0	4	17	441	1833	3018	2835	1222	217	40	8	1	9636	Total
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	

9/29

Önceden görmediğimiz bir veri noktası $x_* \in \mathbb{R}^D$ için çıktı değerini kestirmek $x_* = \begin{bmatrix} x_{*1} & x_{*2} & \dots & x_{*D} \end{bmatrix} \quad y_* = \begin{bmatrix} ? \end{bmatrix}$

Normal dağılım: $\mathcal{N}(x; \mu, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

■ Çok değişkenli normal dağılım:
$$\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

$$egin{aligned} y_i &= f(m{x}_i) + \xi_i \quad orall i \ f &\sim \mathcal{GP}(f; m(\cdot), k(\cdot, \cdot)) \ \xi_i &\sim \mathcal{N}(\xi_i; 0, \sigma^2) \quad orall i \end{aligned}$$

- y_i : x_i için ölçülen çıktı değeri
- $f(\boldsymbol{x}_i)$: \boldsymbol{x}_i için gerçek çıktı değeri
- $m(\cdot)$: ortalama fonksiyonu
- $k(\cdot,\cdot)$: kovaryans fonksiyonu
- ξ_i : gürültü (ölçüm hatası, kayıt hatası, sistemdeki gürültü)

- Gauss süreci fonksiyonlar üzerinde tanımlanmış bir dağılımdır.
- Gözlemlenen değişkenler beraberce normal dağılım izlemektedir.

$$\begin{bmatrix} f(\boldsymbol{x}_1) \\ f(\boldsymbol{x}_2) \\ \vdots \\ f(\boldsymbol{x}_N) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} f(\boldsymbol{x}_1) \\ f(\boldsymbol{x}_2) \\ \vdots \\ f(\boldsymbol{x}_N) \end{bmatrix}; \begin{bmatrix} m(\boldsymbol{x}_1) \\ m(\boldsymbol{x}_2) \\ \vdots \\ m(\boldsymbol{x}_N) \end{bmatrix}, \begin{bmatrix} k(\boldsymbol{x}_1, \boldsymbol{x}_1) & k(\boldsymbol{x}_1, \boldsymbol{x}_2) & \dots & k(\boldsymbol{x}_1, \boldsymbol{x}_N) \\ k(\boldsymbol{x}_2, \boldsymbol{x}_1) & k(\boldsymbol{x}_2, \boldsymbol{x}_2) & \dots & k(\boldsymbol{x}_2, \boldsymbol{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ k(\boldsymbol{x}_N, \boldsymbol{x}_1) & k(\boldsymbol{x}_N, \boldsymbol{x}_2) & \dots & k(\boldsymbol{x}_N, \boldsymbol{x}_N) \end{bmatrix} \right)$$

- Ortalama fonksiyonu olarak genelde 0 fonksiyonu kullanılmaktadır.
 $m(x_i) = 0$
- Kovaryans fonksiyonu olarak Gauss çekirdeği sıklıkla kullanılmaktadır. $k(x_i, x_j) = \exp(-||x_i - x_j||_2^2/s^2)$
 - $egin{aligned} m{y} &= m{f} + m{\xi} \ m{f} &\sim \mathcal{N}(m{f}; m{0}, m{K}) \ m{\xi} &\sim \mathcal{N}(m{\xi}; m{0}, \sigma^2 m{I}) \end{aligned}$

Bayes teoremini kullandığımızda:

$$p(\boldsymbol{f}|\boldsymbol{y}) = rac{p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f})}{p(\boldsymbol{y})}$$

$$egin{aligned} p(m{f}|m{y}) &\propto p(m{y}|m{f}) p(m{f}) \ &\propto p(m{y}-m{f}) p(m{f}) \ &\propto \mathcal{N}(m{y}-m{f};m{0},\sigma^2 \mathbf{I}) \mathcal{N}(m{f};m{0},\mathbf{K}) \end{aligned}$$

En büyük ardıl olasılık kestirimini kullanarak:

$$oldsymbol{f}^{\star} = rg\max_{oldsymbol{f}} p(oldsymbol{f} | oldsymbol{y}) = rg\max_{oldsymbol{f}} \log p(oldsymbol{f} | oldsymbol{y})$$

$$\log p(f|y) = -\frac{1}{2\sigma^2} \|y - f\|_2^2 - \frac{1}{2} f^{\top} \mathbf{K}^{-1} f + \text{constant}$$

f değişkenini $\mathbf{K}\alpha$ ile yer değiştirdiğimizde:

$$\log p(\boldsymbol{\alpha}|\boldsymbol{y}) = -\frac{1}{2\sigma^2} \|\boldsymbol{y} - \mathbf{K}\boldsymbol{\alpha}\|_2^2 - \frac{1}{2}\boldsymbol{\alpha}^\top \mathbf{K}\boldsymbol{\alpha} + \text{constant}$$

Kısıtsız en iyileme problemi

$$egin{aligned} oldsymbol{lpha}^{\star} &= rg\max_{oldsymbol{lpha}} \log p(oldsymbol{lpha} | oldsymbol{y}) \ &= rg\max_{oldsymbol{lpha}} -rac{1}{2\sigma^2} \Big(oldsymbol{y}^{ op} oldsymbol{y} - 2 oldsymbol{y}^{ op} \mathbf{K} oldsymbol{lpha} + oldsymbol{lpha}^{ op} \mathbf{K} \mathbf{K} oldsymbol{lpha} \Big) - rac{1}{2} oldsymbol{lpha}^{ op} \mathbf{K} oldsymbol{lpha} \end{aligned}$$

 $\blacksquare \alpha$ değişkenine göre türev alıp en iyi değeri bulabiliriz.

$$\boldsymbol{\alpha}^{\star} = (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}$$

$$egin{aligned} & oldsymbol{a} \sim \mathcal{N}(oldsymbol{a};oldsymbol{\mu}_a,oldsymbol{\Sigma}_a) \ & oldsymbol{b} \sim \mathcal{N}(oldsymbol{b};oldsymbol{\mu}_b,oldsymbol{\Sigma}_b) \ & oldsymbol{a} + oldsymbol{b} \sim \mathcal{N}(oldsymbol{a} + oldsymbol{b};oldsymbol{\mu}_a + oldsymbol{\mu}_b,oldsymbol{\Sigma}_a + oldsymbol{\Sigma}_b) \end{aligned}$$

y and y_* için bileşik olasılık dağılımı

$$egin{split} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin{a$$

$$egin{split} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin{a$$

■ y_{*} değerini kestirmek için aşağıdaki dağılımı kullanabiliriz.

$$y_*|\boldsymbol{y} \sim \mathcal{N}\Big(y_*; \boldsymbol{k}_*^\top \underbrace{(\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}}_{\boldsymbol{\alpha}}, k(\boldsymbol{x}_*, \boldsymbol{x}_*) - \boldsymbol{k}_*^\top (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{k}_*\Big)$$

RESEARCH ARTICLE

Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean–Congo hemorrhagic fever

Çiğdem Ak¹, Önder Ergönül², İrfan Şencan³, Mehmet Ali Torunoğlu³, Mehmet Gönen^{4,5}*

1 Graduate School of Sciences and Engineering, Koç University, İstanbul, Turkey, 2 Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey, 9 Public Health Directorate, Ministry of Health, Ankara, Turkey, 4 Department of Industrial Engineering, College of Engineering, Koç University, Istanbul, Turkey, 5 School of Medicine, Koç University, Istanbul, Turkey

Her bir veri noktası x_i , bir lokasyon ve bir zaman vektöründen oluşmaktadır.

 $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = k((\boldsymbol{s}_l, \boldsymbol{t}_p), (\boldsymbol{s}_m, \boldsymbol{t}_q)) = k_s(\boldsymbol{s}_l, \boldsymbol{s}_m)k_t(\boldsymbol{t}_p, \boldsymbol{t}_q)$

Her bir veri noktası x_i , bir lokasyon ve bir zaman vektöründen oluşmaktadır.

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = k((\boldsymbol{s}_l, \boldsymbol{t}_p), (\boldsymbol{s}_m, \boldsymbol{t}_q)) = k_s(\boldsymbol{s}_l, \boldsymbol{s}_m)k_t(\boldsymbol{t}_p, \boldsymbol{t}_q)$$

Çekirdek matrisini iki küçük matrisin Kronecker çarpımı şeklinde yazabiliriz.
 $\mathbf{K} = \mathbf{K}_s \otimes \mathbf{K}_t$

Her bir veri noktası x_i , bir lokasyon ve bir zaman vektöründen oluşmaktadır.

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = k((\boldsymbol{s}_l, \boldsymbol{t}_p), (\boldsymbol{s}_m, \boldsymbol{t}_q)) = k_s(\boldsymbol{s}_l, \boldsymbol{s}_m)k_t(\boldsymbol{t}_p, \boldsymbol{t}_q)$$

- Çekirdek matrisini iki küçük matrisin Kronecker çarpımı şeklinde yazabiliriz.
 $\mathbf{K} = \mathbf{K}_s \otimes \mathbf{K}_t$
- y_{*} değerini kestirmek için aşağıdaki dağılımı kullanabiliriz.

$$E[y_{\star}|\boldsymbol{x}_{\star}, \mathbf{X}, \mathbf{Y}, \sigma^{2}] = (\boldsymbol{k}_{s,\star} \otimes \boldsymbol{k}_{t,\star})^{\top} (\mathbf{K}_{s} \otimes \mathbf{K}_{t} + \sigma^{2} \mathbf{I})^{-1} \operatorname{vec}(\mathbf{Y})$$

$$\operatorname{Var}[y_{\star}|\boldsymbol{x}_{\star}, \mathbf{X}, \mathbf{Y}, \sigma^{2}] = k_{s}(s_{\star}, s_{\star}) k_{t}(t_{\star}, t_{\star}) - (\boldsymbol{k}_{s,\star} \otimes \boldsymbol{k}_{t,\star})^{\top} (\mathbf{K}_{s} \otimes \mathbf{K}_{t} + \sigma^{2} \mathbf{I})^{-1} (\boldsymbol{k}_{s,\star} \otimes \boldsymbol{k}_{t,\star})$$

- **A**: $m \times n$ büyüklüğünde bir matris
- **B**: $p \times q$ büyüklüğünde bir matris
- **A** \otimes **B**: $mp \times nq$ büyüklüğünde bir blok matris

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

Örnek

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \times 0 & 1 \times 5 & 2 \times 0 & 2 \times 5 \\ 1 \times 6 & 1 \times 7 & 2 \times 6 & 2 \times 7 \\ 3 \times 0 & 3 \times 5 & 4 \times 0 & 4 \times 5 \\ 3 \times 6 & 3 \times 7 & 4 \times 6 & 4 \times 7 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix}$$

$$egin{aligned} \mathbf{K}_s &= \mathbf{U}_s \mathbf{D}_s \mathbf{U}_s^{ op} \ \mathbf{K}_t &= \mathbf{U}_t \mathbf{D}_t \mathbf{U}_t^{ op} \end{aligned}$$

$$egin{aligned} \mathbf{K}_s &= \mathbf{U}_s \mathbf{D}_s \mathbf{U}_s^{ op} \ \mathbf{K}_t &= \mathbf{U}_t \mathbf{D}_t \mathbf{U}_t^{ op} \end{aligned}$$

$$\mathbf{K}_s \otimes \mathbf{K}_t = (\mathbf{U}_s \otimes \mathbf{U}_t) (\mathbf{D}_s \otimes \mathbf{D}_t) (\mathbf{U}_s \otimes \mathbf{U}_t)^\top$$

$$egin{aligned} \mathbf{K}_s &= \mathbf{U}_s \mathbf{D}_s \mathbf{U}_s^{ op} \ \mathbf{K}_t &= \mathbf{U}_t \mathbf{D}_t \mathbf{U}_t^{ op} \end{aligned}$$

$$\mathbf{K}_s \otimes \mathbf{K}_t = (\mathbf{U}_s \otimes \mathbf{U}_t) (\mathbf{D}_s \otimes \mathbf{D}_t) (\mathbf{U}_s \otimes \mathbf{U}_t)^\top$$

$$(\mathbf{K}_s \otimes \mathbf{K}_t + \sigma^2 \mathbf{I})^{-1} = (\mathbf{U}_s \otimes \mathbf{U}_t) (\mathbf{D}_s \otimes \mathbf{D}_t + \sigma^2 \mathbf{I})^{-1} (\mathbf{U}_s \otimes \mathbf{U}_t)^\top$$

Spatial

Temporal

Spatiotemporal

Clinical Microbiology and Infection 26 (2020) 123.e1-123.e7

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

AND INFECTIO

journal homepage: www.clinicalmicrobiologyandinfection.com

Original article

A prospective prediction tool for understanding Crimean–Congo haemorrhagic fever dynamics in Turkey

Ç. Ak¹, Ö. Ergönül², M. Gönen^{3,4,*}

¹⁾ Graduate School of Sciences and Engineering, Koç University, İstanbul, Turkey

²⁾ Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, İstanbul, Turkey

³⁾ Department of Industrial Engineering, College of Engineering, Koç University, İstanbul, Turkey

4) School of Medicine, Koç University, İstanbul, Turkey

Spatial covariates for 2016 prediction

Spatial covariates for 2017 prediction